Brewing with East Bay Water

MATT YOUNGBLUT
BAY AREA MASHERS
JUNE 2020 MEETING

Why do we care about water for brewing beer?

- ▶ Beer is >95% water
- Water is like a canvas for a painting; the better the canvas the better the painting <u>can</u> be
- Soft water contains few salts (dissolved solids), which is like a blank canvas, but can cause the final beer to taste bland
- Hard water contains lots of salts, which can cause the final beer to taste minerally or harsh
- Most East Bay water is fantastic water for brewing (quite soft)
- Knowing about your water and knowing how to adjust it can potentially lead to a better final beer product

Knowing What's in Your Water

- Municipal water sources publish an annual water report
 - ▶EBMUD just released their 2019 water report
- ▶ You can also test your own water
 - ▶TDS Meter (Total Dissolved Solids)
 - ► LaMotte Water Test Kit
 - ► Commercial mail-in services

Reading an EBMUD Water Report

Regulated for drinking water aesthetics	State or federal goal	Highest amount allowed	System		Water treatment plants			Upper
∠ Secondary MCL (Unit)	PHG or MCLG	MI	average	Walnut Creek	Lafayette	Orinda	Sobrante	San Leandro
Aluminum (ppb)	NA	200	<50	<50	<50	<50	<50 - 59	<50
Chloride (ppm)	NA	250	6	3-5	3-4	4-6	13 – 16	16 – 17
Color (color units)	NA	15	1	1	1	1	1	1
Specific conductance (µS/cm)	NA	900	106	54	54	54 - 102	284	388
Sulfate (ppm)	NA	250	7	1-2	1	1-9	27 – 37	45 – 48
Total dissolved solids (ppm)	NA	500	65	35 – 53	32 – 46	33 - 63	140 - 190	220 – 260
Turbidity (NTU)	NA	5	0.03	0.02 - 0.10	0.01 - 0.09	0.02 - 0.10	0.02 - 0.10	0.02 - 0.10

4 Other parameters of interest to customers (Unit)			Upper			
		Walnut Creek	Lafayette	Orinda	Sobrante	San Leandro
Alkalinity, Total as CaCO ₃ (ppm)		21 – 33	21 – 32	22 – 44	74 – 89	140 – 150
Calcium (ppm)		4-6	4	4-8	17 – 23	30 – 35
Hardness as CaCO ₃	(gpg ^f)	1	-1	1-2	4-5	8-9
	(ppm)	13 – 24	12 – 23	14 – 34	70 – 94	140 – 150
Magnesium (ppm)		1	1	1-2	6-8	12 – 14
pH (pH)		9.3 – 9.4	9.2 - 9.4	9.2 - 9.4 8.1 - 8.9		8.2 - 8.6
Potassium (ppm)		<1-1	<1-1	<1-1	11	2
Silica (ppm)		8 – 12	8 – 12	8 – 12	9 – 11	9 – 10
Sodium (ppm)		5-6	5-6	5-9	20 – 26	27 – 32

Important Take-aways from the 2019 EBMUD Water Report

Main Salts in EBMUD Water

- ► Calcium: 4-35ppm
 - ► For yeast health; target 50+ppm
- ► Chloride: 3-17ppm
 - Accentuates maltiness; target 50-150ppm
- ▶ Sulfate: 1-48ppm
 - Accentuates hop bitterness; target 50-350ppm

Additional Considerations

- ► Magnesium: 1-14ppm
 - For yeast health; target 10-20ppm at most
- ► Sodium: 5-32ppm
 - Might accentuate misc flavors; target TBD
- ► Alkalinity: 21-150ppm
 - Relates to the pH of the beer

What do I do with the water report information?

- ▶ Increasing chloride levels
 - Accentuates "maltiness" in beers
 - Add 1 tsp calcium chloride to 5 gallons to increase to ~100ppm chloride
- Increasing sulfate levels
 - Accentuates "hop bitterness" in beers
 - Add 1 tsp calcium sulfate (gypsum) to 5 gallons to increase to ~100ppm sulfate
- Either one of these additions will increase calcium levels to >50ppm calcium
- Adding too much of any brewing water salts can make the final beer taste harsh and/or minerally

Adding other salts to brewing water

- Magnesium sulfate (Epsom salts)
 - ▶ For yeast health
 - Not necessary to worry about with East Bay water
- Sodium chloride (table salt)
 - Might act as "seasoning" for finished beer
 - Already a component of some beers (e.g. Gose)
 - Experiment with adding small amounts of table salt to some beers to adjust final flavor
- Sodium bicarbonate (baking soda)
 - Adjusts the "buffering" or how pH acts in the finished beer
 - Can be important for dark beers
 - Experiment with adding different amounts to beers that contain dark grains in the mash (try 0.5-2 tsp for 5 gallons)

Testing your own brewing water

- ► TDS Meter (Total Dissolves Solids)
 - ▶ Measures total amount of salts in water by conductivity
 - Provides a quick measure to determine if your water has changed recently (or changed water sources)
- ▶ LaMotte Test Kit
 - Provides a series of colorimetric tests to measure various brewing salts in water
 - Available at MoreBeer etc
- Commercial mail-in services
 - ► Ward labs \$42

Other water considerations

- ▶ Chlorine/chloramine
 - ▶ Added to municipal water sources as a disinfectant
 - Can negatively affect beer flavor/chemistry
 - ▶ Leading cause of chlorophenolic off-flavor
 - Can be removed from your water source by using a carbon filter, R.O. (reverse osmosis) filter system, or pre-boiling your brewing water ahead of time with a Camden tablet (potassium metabisulfite; 1 tablet per 20 gallons of water)
 - ▶ Alternatively, you can buy filtered water

What about pH?

- ► The pH of a beer is primarily set at the beginning of the mash and is retained at that level until the onset of fermentation (either by yeast or by bacteria)
- ▶ pH can be a relatively difficult topic to cover for a general audience, so the focus here will be on "What should I do about the pH of my beer?"
- Answer: if you're brewing with East Bay water, you don't really need to worry about mash pH for most beers/recipes
- ► The crushed grain has a strong ability to set the mash pH at the desired 5.2-5.6 range (as measured at room temperature)
- For dark beers that use a high amount of dark malts in the recipe, adding a salt to raise the mash pH to the higher end of the spectrum might yield a better final beer
 - Salts that raise pH: slaked lime (calcium hydroxide), sodium/potassium carbonate/bicarbonate, lye (sodium hydroxide)
 - Chemicals that lower pH: phosphoric/hydrochloric/sulfuric acid

Post-brewing water adjustments

- You don't necessarily have to adjust your brewing water when brewing
- You can adjust the water at packaging
- Create concentrated solutions of your water salts (gypsum etc) and dose drops into a sample of your beer to taste
- Scale your findings and add water salt solutions to your finished beer, mix well, and package

Final Take-aways

- ▶ If your beer tastes good, then no need to do anything!
- If you want to adjust your brewing water, taking good notes can help you develop your process
- ▶ If your water source tastes good, then go ahead and use it
- Small adjustments to brewing water with brewing water salts <u>can</u> make your final beer taste better
- If your water source tastes bad (salty, chlorine, minerally, or just plain weird), then carbon filter your water, purchase an R.O. water filtration system, or consider buying water from a commercial source

Thank You & Questions?